ANEXO II ESPECIFICAÇÕES DOS FERTILIZANTES MINERAIS SIMPLES

FERTILIZANTE		ANTIA MÍNIMA/ ACTERÍSTICAS	OBTENÇÃO	OBSERVAÇÃO
Acetato de Amônio	16% de N	Nitrogênio solúvel em água na forma de acetato(CH ₃ COONH ₄)	Obtido pela reação da amônia com Ácido Acético	
Acetato de Cálcio	18% de Ca	Cálcio solúvel em água na forma de acetato (Ca(C ₂ H ₃ O ₂) ₂ .H ₂ O)	Reação de Ácido Acético com Calcita.	
Acetato de Cobalto	18% de Co	Cobalto solúvel em água na forma de acetato (Co(C ₂ H ₃ O ₂) ₂ .4H ₂ O)	Reação de Ácido Acético e Óxido de Cobalto	
Acetato de Cobre	23% de Cu	Cobre solúvel em água na forma de acetato (Cu(C ₂ H ₃ O ₂) ₂ .2H ₂ O)	Reação de Ácido Acético e Óxido de Cobre	
Acetato de Ferro	23% de Fe	Ferro solúvel em água na forma de acetato (FeOH(C ₂ H ₃ O ₂) ₂)	Reação de Ácido Acético com Hematita.	
Acetato de Magnésio	13% de Mg	Magnésio solúvel em água na forma de acetato (Mg(C ₂ H ₃ O ₂) ₂)	Reação de Ácido Acético com Magnesita.	
Acetato de Manganês	25% de Mn	Manganês solúvel em água na forma de acetato (Mn(C ₂ H ₃ O ₂) ₂)	Reação de Ácido Acético com Óxido Manganoso.	
Acetato de Potássio	38% de K ₂ O	Potássio solúvel em água na forma de acetato (KC ₂ H ₃ O ₂)	Reação de Ácido Acético com Potassa.	
Acetato de Zinco	28% de Zn	Zinco solúvel em água na forma de acetato (Zn(C ₂ H ₃ O ₂) ₂)	Reação de Ácido Acético com Óxido de Zinco.	
Ácido Bórico	17% de B	Boro solúvel em água na forma de ácido (H ₃ BO ₃).	Obtenção a partir de Borato de Sódio ou Cálcio, tratado com Ácido Sulfúrico ou Clorídrico.	
Ácido Fosforoso	80% de P ₂ O ₅	Fósforo solúvel em água na forma de (H ₃ PO ₃) - Ácido Fosforoso	Obtenção a partir da Hidrólise do PCl ₃ PCl ₃ +3H ₂ O→H ₃ PO ₃ + 3HCl	
Solução de Ácido Fosfórico	40% de P ₂ O ₅	Fósforo solúvel em água (H ₃ PO ₄)	Reação da rocha fosfática com Ácido Sulfúrico ou diluição do Ácido Fosfórico em água	

Alga Marinha Lithothamnium.	32% de Ca 2% de Mg	Cálcio total Magnésio total Especificação granulométrica: Pó	Extração e moagem a pó de depósitos naturais de algas marinhas lithothamnium.	Pode ser comercializada nas demais especificações granulométricas, desde que o fertilizante seja produzido a partir de produto em pó. Apresenta também característica de corretivo de acidez.
Amônia Anidra	82% de N	O Nitrogênio deverá estar totalmente na forma amoniacal	Síntese catalítica entre o Nitrogênio do ar atmosférico e o Hidrogênio proveniente do craqueamento de hidrocarboneto.	
Aquamônia	10% de N	O Nitrogênio deverá estar totalmente na forma amoniacal.	Reação da Amônia Anidra com água.	
Borato de Monoetanolamina	8% de B	Boro em solução	Éster de Ácido Bórico com Monoetanolamina	
Bórax Decahidratado	10% de B	Boro na forma Borato de Sódio (Na ₂ B ₄ O ₇ .10H ₂ O)	Obtenção a partir da reação do Ácido Bórico com Hidróxido de Sódio	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Bórax Pentahidratado	13% de B	Boro na forma Borato de Sódio (Na ₂ B ₄ O ₇ .5H ₂ O)	Obtenção a partir da reação do Ácido Bórico com Hidróxido de Sódio	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Boro Orgânico	8% de B	Boro na forma de Éster ou Amina	A partir da reação de Ácido Bórico ou Boratos com Alcoóis ou Aminas naturais ou sintéticas	
Borra de Enxofre	50% de S	Determinado como Enxofre total.	Resultante da filtração de Enxofre utilizado na produção de Ácido Sulfúrico.	
Borra de Fosfato de Ferro e Zinco	20% de P_2O_5 14% de Fe 3% de Zn	Fósforo total e mínimo de 18% solúvel em CNA + água. Zinco e Ferro em teor total	Subproduto industrial neutralizado, oriundo do tratamento de chapa metálica com Ácido Fosfórico e Zinco.	Mínimo de 60% do teor total de Zinco e Ferro solúvel em ácido cítrico a 2%.

Carbonato de Cálcio	32% de Ca	Cálcio total como Carbonato (CaCO ₃) Especificação granulométrica: Pó	1) moagem a pó e tamização da rocha calcária calcítica; 2) precipitação do leite de cal; 3) moagem de conchas marinhas.	Pode ser comercializada nas demais especificações granulométricas, desde que o fertilizante seja produzido a partir de produto em pó. Apresenta também característica de corretivo de acidez. Pode conter até 3% de Mg
Carbonato de Cálcio e Magnésio	18% de Ca 3% de Mg	Cálcio Magnésio total como Carbonato Especificação granulométrica: Pó.	moagem a pó e tamização da rocha calcária dolomítica	Pode ser comercializada nas demais especificações granulométricas, desde que o fertilizante seja produzido a partir de produto em pó. Apresenta também característica de corretivo de acidez.
Carbonato de Cobalto	42% de Co	Cobalto na forma de carbonato (CoCO ₃)	A partir da reação do Co(NO ₃) ₂ .6H ₂ O com Carbonato de Sódio.	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Carbonato de Cobre	48% de Cu	Cobre na forma de carbonato (CuCO ₃ .Cu(OH) ₂)	A partir da reação de CuSO ₄ .5H ₂ O com Carbonato de Sódio.	Mínimo de 60% do teor total solúvel em CNA + água (relação 1:1)
Carbonato de Ferro	41% de Fe	Ferro na forma de carbonato (FeCO ₃)	A partir da reação de FeCl ₂ com Carbonato de Sódio.	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Carbonato de Magnésio (Magnesita)	25% de Mg	Magnésio total como carbonato (MgCO ₃)	Beneficiamento do mineral Magnesita.	
Carbonato de Manganês	40% de Mn	Manganês na forma de carbonato (MnCO ₃)	A partir da reação de MnSO ₄ com Carbonato de Sódio	Mínimo de 60% do teor total solúvel em CNA + água (relação 1:1)
Carbonato de Potássio	66% de K ₂ O	Potássio solúvel em água na forma de carbonato (K ₂ CO ₃)	Precipitação do Cloreto de Potássio (KCI) com Bicarbonato de Sódio (Na ₂ CO ₃)	
Carbonato de Zinco	49% de Zn	Zinco total na forma de carbonato (ZnCO ₃).	A partir da reação de ZnSO ₄ com Carbonato de Sódio	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Cianamida de Cálcio	18% de N 26% de Ca	Nitrogênio na forma cianamídica podendo conter até 3% de Nitrogênio, como Nitrato de Cálcio.	Ação de Nitrogênio sobre o Carbeto de Cálcio com adição de Nitrato.	Apresenta também características de corretivo de acidez.
	42% de	Potássio na forma de	Por meio da reação do	ļ.

K ₂ O	Citrato	Ácido Cítrico com o	
120			
	determinado como	ou Carbonato de	
	K ₂ O solúvel em água	Potássio.	
20% de Cu	Cobre solúvel em	Por meio da reação do	Mínimo de 23% de
			Cloro (CI).
25% de N		-	Mínimo de 62% de
		·	Cloro (CI).
	Amomacai (NH4CI)	, ,	
24% de Ca	Cálcio solúvel em	Por meio da reação do	Mínimo de 43%
	água na forma de	Óxido de Cálcio com	de Cloro (CI).
	cloreto (CaCl ₂ .2H ₂ O).	Ácido Clorídrico.	
34% de Co		_	Mínimo de 40% de
	•		Cloro (CI).
	cloreto (CoCl ₂ .2H ₂ O)	com Acido Clorídrico.	
10% de Ma	Magnésio solúvel na	A partir da reação de	Mínimo de 26% de
, sta do mg	forma de cloreto		Cloro (Cl).
	(MgCl ₂ .6H ₂ O)	(MgO) com Ácido	, ,
	-	Clorídrico.	
25% de Mn			Mínimo de 32% de
			Cloro (CI).
	cloreto (MnCl ₂ .4H ₂ O)	1 7	
58% do	Dotássio na forma do		Mínimo de 45% de
		· ·	Cloro (Cl).
IN ₂ O		•	01010 (01).
	· ·	métodos de separação.	
24% de Zn	Zinco solúvel em	A partir da reação de	Mínimo de 26% de
	•	, , ,	Cloro (CI).
	i e		
15% de Fe			Mínimo de 30% de
	o .		Cloro (CI).
23% de Fe			Mínimo de 30% de
20,0 40.0			Cloro (CI).
	cloreto (FeCl ₂ .4H ₂ O)	Clorídrico.	, ,
8% de B	Boro total na forma	Beneficiamento físico	Mínimo de 6 % de
	de Borato de Cálcio	do mineral natural	Ca.
			Mínimo de 60% do
	ou CaB ₄ O ₇ .15H ₂ O)		teor total de Boro
			solúvel em ácido cítrico a 2%.
24% de	Fósforo determinado	Beneficiamento	on ico a 2 /o.
		mecânico da rocha	
20% de Ca	mínimo de 4%	fosfatada mediante	
	solúvel em Ácido	moagem fina,	
	Cítrico a 2% na	desmagnetização e	
	-	flotação.	
	1 -		
	•		
	mm (ABNT n° 200).		
	25% de N 24% de Ca 34% de Co 10% de Mg 25% de Mn 58% de K ₂ O 24% de Zn 15% de Fe 23% de Fe 8% de B	CC ₆ H ₅ O ₇ K ₃ H ₂ O), determinado como K ₂ O solúvel em água	C ₆ H ₅ O ₇ K ₃ H ₂ O ₎ determinado como K ₂ O solúvel em água na forma de Cloreto (CuCl ₂ -6H ₂ O) Por meio da reação do Carbonato de Cobreco (CuCl ₂ -6H ₂ O) Por meio da reação do Carbonato de Cobreco (Carbonato de Amônio e Cloreto de Sódio. Por meio da reação do Acido Cloridrico por Amônia. Reação entre Carbonato de Amônio e Cloreto (CaCl ₂ -2H ₂ O). Reação entre Carbonato de Amônio e Cloreto (CaCl ₂ -2H ₂ O). Por meio da reação do Oxido de Cálcio com Acido Cloridrico. Por meio da reação do Carbonato de Cobalto com Acido Cloridrico. Por meio da reação do Carbonato de Cobalto com Acido Cloridrico. Por meio da reação do Carbonato de Cobalto com Acido Cloridrico. Por meio da reação do Carbonato de Cobalto com Acido Cloridrico. Por meio da reação do Carbonato de Cobalto com Acido Cloridrico. Por meio da reação do Carbonato de Calcio com Acido Cloridrico. Por meio da reação do Carbonato de Calcio com Acido Cloridrico. Por meio da reação do Carbonato de Calcio com Acido Cloridrico. Por meio da reação do Acido Cloridrico. Por meio da reação do Carbonato de Cálcio com Acido Cloridrico. Por meio da reação do Carbonato de Cálcio (CaCl ₂ -2H ₂ O) Por meio da reação do Acido Cloridrico. Por meio da reação do Carbonato de Cálcio (CaCl ₂ -2H ₂ O) Por meio da reação do Acido Cloridrico. Por meio da reação do Carbonato de Cálcio (CaCl ₂ -2H ₂ O) Por meio da reação do Acido Cloridrico. Por meio da reação do Carbonato de Cálcio (Cordirico (MgO) com Acido Cloridrico. A partir da reação de Portassio por dissoluções seletivas, flotação ou outros métodos de separação. A partir da reação de Ferro (Fe) com Acido Cloridrico. Por meio da reação de Ferro (Fe) com Acido Cloridrico. Por meio da reação do Oxido de Magnesio (MgO) com Acido Cloridrico. A partir da reação de Ferro (Fe) com Acido Cloridrico. Por meio da reação de

Enxofre	95% de S	Determinado como Enxofre total. Especificação granulométrica: Pó	Extração de depósitos naturais de Enxofre ou a partir da pirita, subproduto de gás natural, gases de refinaria e fundições, do carvão. Pode ser obtido também do Sulfato de Cálcio ou Anidrita.	Como matéria- prima para a fabricação de ácido sulfúrico fica dispensada a exigência de especificação granulométrica.
Escória de Desfosforização	12% de P ₂ O ₅ 18% de Ca	Fósforo determinado como P ₂ O ₅ solúvel em Ácido Cítrico a 2% na relação de 1:100 Granulometria: Partículas deverão passar 75% (setenta e cinco por cento) em peneira de 0,15 mm (ABNT n° 100).	Desfosforização de ferro gusa por aeração e adição de rocha calcária e, se necessário, compostos quartzíferos. Moagem ou pulverização de escória líquida em corrente de ar com resfriamento brusco e peneiração.	
Escória Silicatada	10% de Si 10% de Ca	Silício total na forma de Silicato Cálcio total Especificação granulométrica: Pó	A partir do tratamento e moagem de escórias silicatadas (agregado siderúrgico) geradas no processo de produção de ferro e aço (processo siderúrgico).	Pode ser comercializada nas demais especificações granulométricas, desde que o fertilizante seja produzido a partir de produto em pó. Apresenta também características de corretivo de acidez Pode conter
Farinha de Osso Calcinado	20% de P ₂ O ₅	Fósforo determinado como P ₂ O ₅ total e mínimo de 16% solúvel em ácido cítrico a 2% na relação 1:100	Calcinação e moagem de ossos de bovinos.	Magnésio (Mg) Deve conter no mínimo 16% de Cálcio
Farinha de Osso Autoclavado	10% de P ₂ O ₅ 1% de N	Fósforo determinado como P ₂ O ₅ total e mínimo de 8% solúvel em ácido cítrico a 2% na relação 1:100 Nitrogênio Total	Autoclavagem de ossos bovinos processados por ação de vapor saturado direto, a mais de 140°C, sob pressão superior a 7 Bar, por no mínimo 3 (três) horas.	Pode conter 3% ou mais de Carbono Orgânico. Mínimo de 16% de Cálcio
Formiato de Cálcio	24% de Ca	Cálcio solúvel em água na forma Ca.(HCO ₂) ₂	Reação de Ácido Fórmico com Calcita.	
Formiato Cobaltoso	23% de Co	Cobalto solúvel em água na forma Co.(HCO ₂) ₂	Reação de Ácido Fórmico com Óxido Cobaltoso.	
Formiato de Cobre	35% de Cu	Cobre solúvel em água na forma Cu.HCO ₂	Reação de Ácido Fórmico com Óxido Cuproso.	
Formiato Ferroso	18% de Fe	Ferro solúvel em água na forma Fe.(HCO ₂) ₂ .2H ₂ O	Reação de Ácido Fórmico com hematita.	

		Magnésio solúvel em	Reação de Ácido	
Formiato de	16% de Mg	água na forma	Fórmico com Magnesita	
Magnésio	1070 de Nig	Mg.(HCO ₂) ₂	Calcinada.	
		Manganês solúvel em	Reação de Ácido	
Formiato de	22% de Mn	água na forma	Fórmico com Óxido de	
Manganês	2270 40 1111	Mn.(HCO ₂) ₂	Manganês.	
		Potássio	Reação de Ácido	
Formiato de	40% de	solúvel em água na	Fórmico com Potassa.	
Potássio	K ₂ O	forma K.HCO ₂		
		Zinco solúvel	Reação de Ácido	
Formiato de Zinco	25% de Zn	em água na forma	Fórmico com Óxido de	
		Zn.(HCO ₂) ₂	Zinco.	
	15% de	Fósforo determinado	Reação de rocha	
Fosfatado	P_2O_5	como P ₂ O ₅ solúvel	fosfática moída com	
Acidulado	15% de Ca	em Citrato Neutro de	Ácido Sulfúrico	
Sulfúrico	10% de S	Amônio mais água e		
		mínimo de 60%		
		deste teor solúvel em		
		água.		
	36% de	Fósforo determinado	Reação de rocha	
Fosfatado	P_2O_5	como P ₂ O ₅ solúvel	fosfática moída com	
Acidulado	10% de Ca	em Citrato Neutro de	Ácido fosfórico	
Fosfórico		Amônio mais água e		
		mínimo de 60%		
		deste teor solúvel em		
		água.		
F 6 1 0 / 1	32% de Cu	Cobre na forma de	Reação do Fosfato de	Mínimo de
Fosfato Cúprico	34% de	Amônio Fosfato de	Cobre com Amônia.	60% do teor total
Amoniacal.	P ₂ O ₅	Cobre		solúvel em CNA +
	5% de N	$(CuNH_4PO_4.H_2O).$ P_2O_5 solúvel em		água (relação 1:1)
		Citrato Neutro de		
		Amônio mais água		
	14% de	Fósforo determinado	Resultante do	
Fosfato	P_2O_5	como P ₂ O ₅ total e	tratamento de	
Decantado	12% de Ca	mínimo de 9% de	efluentes da produção	
Decamado	1270 de 0a	P ₂ O ₅ solúvel em	de ácido fosfórico.	
		Citrato Neutro de	de delde resieries.	
		Amônia mais água.		
	41% de Co	Cobalto na forma	A partir da reação do	Mínimo de
Fosfato de	32% de	$Co_3(PO_4)_2$	CoCl ₂ com Fosfato de	60% do teor total
Cobalto	P_2O_5	P_2O_5 solúvel em	Amônio (NH ₄)2.HPO ₄	de Cobalto (Co)
		Citrato Neutro de		solúvel em ácido
		Amônio mais água		cítrico a 2%.
	17% de N	Fósforo determinado	Reação do Ácido	
Fosfato	45% de	como P ₂ O ₅ solúvel	Fosfórico com Amônia.	
Diamônico (DAP)	P_2O_5	em CNA mais água e		
		mínimo de 38%		
		solúvel em água.		
		Nitrogênio na forma		
	_	amoniacal.		
	19% de N	Nitrogênio na forma	Reação do Ácido	
Fosfato	50% P ₂ O ₅	amoniacal e Fósforo	Fosfórico de alta	
Diamônico cristal		determinado como	pureza com Amônia ou	
(DAP cristal)		P ₂ O ₅ solúvel em	purificação do DAP	
		água.		

	1			
Fosfato Ferroso Amoniacal	29% de Fe 36% de P ₂ O ₅ 5% de N	Ferro solúvel em água na forma de Fe(NH ₄)PO ₄ .H ₂ O. P ₂ O ₅ solúvel em citrato neutro de amônio mais água	Amoniação do Fosfato Ferroso	Mínimo de 60% do teor total de Ferro (Fe) solúvel em ácido cítrico a 2%.
Fosfato Monoamônico (MAP)	9% de N 48% de P ₂ O ₅	Fósforo determinado em P ₂ O ₅ solúvel em citrato neutro de amônio mais água e mínimo de 44% solúvel em água. Nitrogênio na forma amoniacal.	Reação do Ácido Fosfórico com Amônia	
Fosfato Monoamônico Cristal (MAP Cristal)	11% N 60% P ₂ O ₅	Nitrogênio na forma amoniacal e Fósforo determinado como P ₂ O ₅ solúvel em água.	Reação do Ácido Fosfórico de alta pureza com amônia ou purificação do MAP.	
Fosfato Monopotássico (KH ₂ PO ₄)	51% de P_2O_5 33% de K_2O	Fósforo determinado como P ₂ O ₅ solúvel em água e K ₂ O solúvel em água	Reação do Hidróxido de Potássio com Ácido Fosfórico	
Fosfato Natural	24% de P_2O_5 20% de Ca	Fósforo determinado como P_2O_5 total e mínimo de 4% solúvel em Ácido Cítrico a 2% na relação 1:100 Granulometria: Partículas deverão passar 85% (oitenta e cinco por cento) em peneira de 0,075 mm (ABNT n° 200).	Moagem da fosforita	
Fosfato Parcialmente Acidulado	20% de P_2O_5 16% de Ca	Fósforo determinado em P ₂ O ₅ total, mínimo de 9% solúvel em Citrato Neutro de Amônio mais água, e mínimo de 5% solúvel em água.	Acidulação parcial do fosfato natural ou concentrado apatítico com Ácido Sulfúrico, Clorídrico ou Fosfórico.	Pode conter até 6% de Enxofre (S) e até 2% de Magnésio (Mg). Mínimo de 11% de P ₂ O ₅ solúvel em Ácido Cítrico a 2% na relação 1:100.
Fosfato Natural Reativo	27% de P ₂ O ₅ 28% de Ca	Fósforo determinado como P ₂ O ₅ total e mínimo de 30% do teor total solúvel em Ácido Cítrico a 2% na relação 1:100. Granulometria: Partículas deverão passar 100% na peneira de 4,8mm (ABNT n° 4) e passar 80% na peneira de 2,8mm (ABNT n° 7)	Extração natural e beneficiamento por meio do processo de homogeneização hidropneumática ou flotação.	Poderá ser declarado o teor de P ₂ O ₅ solúvel em Ácido Fórmico a 2%, relação 1:100, quando este for no mínimo 55% do P ₂ O ₅ total.
Solução de Fosfito de Potássio	P_2O_5 20% de K_2O	P_2O_5 e K ₂ O solúveis em água	Reação do Ácido Fosforoso com Hidróxido ou Carbonato de Potássio	Pode conter no máximo 2% de Sódio (Na) residual.

				Fósforo na forma de fosfito (PO ₃ -3)
Solução de Fosfito de Cálcio	28% de P ₂ O ₅ 5% de Ca	Fósforo determinado como P ₂ O ₅ solúvel em água e Cálcio solúvel em água	Reação do ácido fosforoso com Óxido de Cálcio ou Hidróxido de Cálcio. Dissolução do Cloreto de Cálcio em solução de ácido fosforoso.	Pode conter no máximo 2% de Sódio (Na) residual. Fósforo na forma de fosfito (PO ₃ ⁻³)
Solução de Fosfito de Magnésio	28% P ₂ O ₅ 3% de Mg	Fósforo determinado como P ₂ O ₅ solúvel em água e Magnésio solúvel em água	Dissolução do Sulfato de Magnésio em solução de ácido fosforoso.	Pode conter no máximo 2% de Sódio (Na) residual. Fósforo na forma de fosfito (PO ₃ ⁻³)
Solução de Fosfito de Zinco	38% de P ₂ O ₅ 8% de Zn	Fósforo determinado como P ₂ O ₅ solúvel em água e Zinco solúvel em água	Reação do ácido fosforoso com Óxido de Zinco. Dissolução do Cloreto de Zinco ou Sulfato de Zinco em solução de ácido fosforoso.	Pode conter no máximo 2% de Sódio (Na) residual. Fósforo na forma de fosfito (PO ₃ ⁻³)
Solução de Fosfito de Manganês	28% de P ₂ O ₅ 8% de Mn	Fósforo determinado como P ₂ O ₅ solúvel em água e Manganês solúvel em água	Dissolução do Cloreto de Manganês ou Sulfato de Manganês em solução de ácido fosforoso.	Pode conter no máximo 2% de Sódio (Na) residual. Fósforo na forma de fosfito (PO ₃ ⁻³)
Fosfossulfato de Amônio	13% de N 20% de P ₂ O ₅ 12% de S	Fósforo determinado como P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água. Nitrogênio na forma amoniacal.	Reação entre Amônia Anidra e uma mistura de Ácido Fosfórico e Sulfúrico.	
Hidroboracita	7% de B	Boro na forma de borato de cálcio e magnésio (CaO.MgO.3B ₂ O ₃ .6H ₂ O)	Beneficiamento físico do mineral natural.	Mínimo de 7% de Ca e 4% de Mg. Mínimo de 60% do teor total Boro solúvel em ácido cítrico a 2%.
Hidróxido de Cálcio	48% de Ca	Cálcio total como Hidróxido (Ca(OH) ₂)	Calcinação total, hidratação, moagem, tamização do mineral calcita.	Apresenta também característica de corretivo de acidez.
Hidróxido de Cálcio e Magnésio	24% de Ca 4% de Mg	Cálcio (Ca) e Magnésio (Mg) total como Hidróxido	Calcinação total, hidratação, moagem e tamização do mineral dolomita.	Apresenta também características de corretivo de acidez
Hidróxido de Potássio	71% de K₂O	Potássio na forma de hidróxido (KOH), determinado como K ₂ O solúvel em água.	Pela eletrólise da solução saturada de Cloreto de Potássio com posterior purificação.	

	ı		T	
Hidróxido de Magnésio	35% de Mg	Magnésio na forma de Mg(OH) ₂ .	Precipitação de sal solúvel de magnésio com hidróxido de amônio	Produto insolúvel em água.
Kieserita	16% de Mg 20% de S	Magnésio solúvel em água (MgSO ₄ .H ₂ O).	Beneficiamento de hartsalz composto de silvinita (KCI), halita (NaCI) e Kieserita.	
Molibdato de Amônio	52% de Mo 5% de N	Molibdênio e Nitrogênio solúveis em água na forma (NH ₄) ₆ Mo ₇ O ₂₄ .2H ₂ O Nitrogênio total	Reação do Ácido Molibídico com Hidróxido de Amônia	
Molibdato de Monoetanolamina	10% de Mo	Molibdênio em solução	Éster de Ácido Molibídico com Monoetanolamina	
Molibdato de Potássio	28% de Mo 27% de K ₂ O	Molibdênio e Potássio solúveis em água na forma de K ₂ MoO ₄ .5H ₂ O	Obtido pela reação do MoO ₃ com KOH.	Pode conter no máximo 0,5% de Cloro (CI) residual.
Molibdato de Sódio	39% de Mo	Molibdênio solúvel em água na forma de Na ₂ Mo O ₄ .2H ₂ O	Reação do Trióxido de Molibdênio com Hidróxido de Sódio.	
Multifosfato Magnesiano	18% de P_2O_5 8% de Ca 3% de Mg 6% de S	Fósforo determinado como P₂O₅ solúvel em CNA mais água e mínimo de 8% solúvel em água. Cálcio, Magnésio e Enxofre total. Granulometria: Partículas deverão passar no mímimo 90% na peneira de 2,8 mm (ABNT n° 7) e passar no máximo 35% na peneira de 0,5 mm (ABNT n° 35)	Reação de Fosfato Natural ou concentrado apatítico moído com Ácido Sulfúrico e Óxido de Magnésio	
Nitrato de Amônio	32% de N	O Nitrogênio deverá estar 50% na forma amoniacal e 50% na forma nítrica.	Neutralização do Ácido Nítrico pela Amônia Anidra	
Nitrato de Amônio e Cálcio	20% de N 2% de Ca	O Nitrogênio deverá estar 50% na forma amoniacal e 50% na forma nítrica	 Adição de calcário ou dolomita sobre Amoníaco e Ácido Nítrico. Mistura de Nitrato de Cálcio com o Carbonato de Amônio. 	
Nitrato de Cálcio	14% de N 16% de Ca	Nitrogênio na forma nítrica, podendo ter até 1,5% na forma amoniacal	Reação de Ácido Nítrico com Óxido ou Carbonato de Cálcio.	
Nitrato de Cobalto	17% de Co 8% de N 22% de Cu	Cobalto solúvel em água na forma de Co(NO ₃) ₂ .6H ₂ O Cobre solúvel em	A partir da reação de CoCO ₃ com Ácido Nítrico. A partir da reação de	
Nitrato de Cobre	9% de N	água na forma de	CuO com Ácido Nítrico.	

		Cu(NO ₃) ₂ .3H ₂ O		
Nitrato de	8% de Mg	Magnésio solúvel em	A partir da reação de	
Magnésio	10% de N	água na forma de Mg(NO ₃) ₂ .6H ₂ O	MgO com Ácido Nítrico.	
Nitrato de	16% de Mn	Manganês solúvel	A partir da reação de	
Manganês	8% de N	em água na forma de Mn(NO ₃) ₂ .6H ₂ O	MnO com Ácido Nítrico.	
	44% de	Potássio	1) Recuperação do	
Nitrato de	K ₂ O	determinado como	caliche por	
Potássio	12% de N	K ₂ O solúvel em água.	cristalização das águas	
		Nitrogênio na forma nítrica.	de lavagem. 2) Reação do Cloreto	
		Tittica.	de Potássio com Ácido	
			Nítrico.	
			3) A partir do Cloreto	
			de Potássio e Nitrato	
			de Sódio por	
	140/ dc N	O Nitrogânia deces	dissoluções seletivas.	O toor do
Nitrato de Sódio	16% de N	O Nitrogênio deverá estar na forma nítrica	1) Purificação e concentração do	O teor de Perclorato não
Tattato de Soulo		ostar na forma filtita	caliche.	poderá ser maior
			2) Ação de óxido de	de 1% expresso
			Nitrogênio sobre o	em Perclorato de
			Hidróxido de Sódio ou	Sódio.
			lixívia.	
			3) Ação de Ácido Nítrico sobre Hidróxido	
			de Sódio ou lixívia.	
	18% de Zn	Zinco solúvel em	A partir da reação de	
Nitrato de Zinco	8% de N	água na forma de	Óxido de Zinco (ZnO)	
		$Zn(NO_3)_2.6H_2O$	com Ácido Nítrico.	
Nitrato Duplo de	15% de N	Nitrogênio na forma	Refinação do caliche.	
Sódio e Potássio	14% de K ₂ O	nítrica.		
	11% de Fe	Ferro solúvel em	A partir da reação de	
Nitrato Férrico	8% de N	água na forma de	Ferro (Fe) com Ácido	
		Fe(NO ₃) ₃ .9H ₂ O	Nítrico	
	14% de N	Fósforo determinado	Reação entre rocha	
Nitrofosfato	6% de Ca	em P ₂ O ₅ solúvel em	fosfatada moída com o	
	18% de P ₂ O ₅	Citrato Neutro de Amônio mais água;	Ácido Nítrico ou mistura de ácidos.	
	F ₂ O ₅	mínimo de 14% de	illistura de acidos.	
		P ₂ O ₅ solúvel em		
		água. Nitrogênio na		
		forma nítrica.		
	2504 -1 51	Cálcio total	Danaga da Code I. I.	
	25% de N 3% de S	O Nitrogênio deve estar metade na	Reação do Sulfato de Cálcio com Nitrato de	
Nitrossulfocálcio	3% de S 3% de Ca	forma amoniacal e	Amônio.	
. Introopullocalcio	5 /5 dC 0d	metade na forma	7	
		nítrica.		
		Cálcio e Enxofre		
	0004 1 5	total.	D ~	
Octaborato de	20% de B	Boro total na forma	Reação com fusão do	
Sódio		de Na ₂ B ₈ O ₁₃ .4H ₂ O ou Na ₂ B ₈ O ₁₃ .3H ₂ O	Borato de Sódio com Anidrido Bórico	
	70% de Cu	Cobre total na forma	Queima do Cobre	Mínimo de 60% do
Óxido Cúprico		de óxido (CuO)	metálico finamente	teor total solúvel
·			moído.	em CNA + água
				(relação 1:1)

Óxido Cuproso	80% de Cu	Cobre na forma de Óxido (Cu ₂ O).	Obtido em processo eletrolítico por meio do Cobre metálico ou em processo de redução em fornos por meio de Óxido Cúprico mais Cobre Metálico finamente moído.	Mínimo de 60% do teor total solúvel em CNA + água (relação 1:1)
Óxido de Cálcio	64% de Ca	Cálcio total como óxido (CaO).	Calcinação total e moagem do mineral calcita.	Apresenta também característica de corretivo de acidez.
Óxido de Cálcio e Magnésio	32% de Ca 6% de Mg	Cálcio e Magnésio total como Óxido	Calcinação total, moagem e tamização do mineral Dolomita	Apresenta também características de corretivo de acidez
Óxido de Cobalto	56% de Co	Cobalto total na forma de óxido (CoO)	Queima em fornos, do Carbonato de Cobalto.	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Óxido de Magnésio	45% de Mg	Magnésio total com óxido (MgO)	Calcinação da magnesita.	
Óxido de Zinco	72% de Zn	Zinco total na forma de óxido (ZnO).	Oxidação por queima do Zinco metálico.	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Óxido Manganoso	50% de Mn	Manganês total na forma de óxido (MnO).	Redução à alta temperatura do Bióxido de Manganês.	Mínimo de 60% do teor total solúvel em CNA + água (relação 1:1)
Pentaborato de Sódio	18% de B	Boro na forma de borato de sódio ($Na_2B_{10}O_{16}$.10 H_2O) ou ($Na_2B_{10}O_{16}$)	Reação com fusão do Borato de Sódio com Anidrido Bórico.	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Polifosfato de Ferro e Amônio	22% de Fe 55% de P ₂ O ₅ 4% de N	Ferro total na forma de Fe(NH ₄)HP ₂ O ₇ Fósforo total Nitrogênio total	Tratamento com amônia do Pirofosfato Férrico.	Mínimo de 60% do teor total de Ferro (Fe) solúvel em ácido cítrico a 2%.
Quelatos de: Boro Cobalto Cobre Ferro Manganês Molibdênio Níquel Zinco Ca Mg	8% de B 2% de Co 5% de Cu 5% de Fe 5% de Mn 3% de Mo 2% de Ni 7% de Zn 2% de Ca 2% de Mg	B, Co, Cu, Fe, Mn, Ni, Ca, Mg, Mo, Zn, Ca e Mg solúvel em água, ligados a um dos quelantes relacionados no Anexo III.	Reação do sal inorgânico com agente quelante.	Cada produto deverá conter apenas um Nutriente.

Silicato de Cálcio	20% de Si 29% de Ca	Silício total na forma de silicato Cálcio total	1) a partir da moagem e tratamento térmico com monitoramento diário da temperatura (mínimo de 1000°C) do Silicato de Cálcio; 2) a partir da moagem e tratamento térmico com monitoramento diário (mínimo de 1000°C) de compostos silicatados com compostos calcíticos.	Pó, Farelado, Farelado Fino e Granulado. Apresenta também características de corretivo de acidez
Silicato de Cálcio e Magnésio	10% de Si 7% Ca 1% de Mg	Silício total na forma de silicato. Cálcio total. Magnésio total.	1) a partir do tratamento térmico com monitoramento diário da temperatura (mínimo 1000°C) de compostos silicatados com compostos dolomíticos; 2) a partir do tratamento e moagem de escórias silicatadas (agregado siderúrgico) geradas no processo de produção de ferros e de aço (processo siderúrgico)	Pó, Farelado, Farelado Fino e granulado. Apresenta também características de corretivo de acidez
Silicatos de: Boro Cobalto Cobre Ferro Manganês Molibdênio Níquel Zinco	1% de B 0,1% de Co 1% de Cu 2% de Fe 2% de Mn 0,1% de Mo 0,1% de Ni 5% de Si 3% de Zn	Boro total Cobalto total Cobre total Ferro total Manganês total Molibdênio total Níquel total Silício total Zinco total	Fusão da sílica a mais de 1000° C com fonte de micronutrientes.	Deve conter no mínimo silício e Mais 1 micronutriente. Mínimo de 60% do teor total solúvel nos extratores indicados no item 3 da alínea "b" do inciso II do art. 5° do Anexo I desta Norma.
Solução de Silicato de Potássio Solução Nitrogenada	10% de Si 10% de K ₂ O 20% de N	Silício solúvel em água Potássio solúvel em água Nitrogênio total.	Reação de minerais silicatados com Hidróxido de Potássio. A partir da dissolução em água de soluções aquosas de Amônia e/ou Nitrato de Amônio	
			e/ou Uréia ou outros compostos de Nitrogênio.	

Sulfato de Amônio	20% de N 22% de S	O Nitrogênio deverá estar na forma amoniacal.	 Neutralização do Ácido sulfúrico pelo Amoníaco. Reação do Carbonato de Amônio com o gesso. A partir de gases de coqueria provenientes de unidades de fabricação de Ácido Sulfúrico. 	O teor de Tiocianato não poderá exceder a 1%, expresso em Tiocianato de Amônio.
Sulfato de Cálcio	16% de Ca 13% de S	Cálcio e enxofre determinados na forma elementar.	 Produto resultante da fabricação do Ácido Fosfórico. Beneficiamento de gipsita. 	Apresenta também características de corretivo de sodicidade.
Sulfato de Cobalto	20% de Co 10% de S	Cobalto solúvel em água na forma de sulfato (CoSO ₄ .xH ₂ O)	A partir da reação de CoCO ₃ com Ácido Sulfúrico. Reação do Cobalto metálico com ácido sulfúrico, neutralizado com Hidróxido de Amônio.	
Sulfato de Cobre	24% de Cu 11% de S	Cobre solúvel em água na forma de sulfato.(CuSO ₄ .xH ₂ O)	Por meio da reação por oxidação do Cobre Metálico com ácido Sulfúrico.	
Sulfato de Magnésio	9% de Mg 11% de S	Magnésio solúvel em água. (MgSO ₄ .xH ₂ O)	Por meio da reação do Óxido de Magnésio com Ácido Sulfúrico.	
Sulfato de Manganês	26% de Mn 16% de S	Manganês solúvel em água na forma de MnSO ₄ .H ₂ O	Reação de Monóxido de Manganês com Ácido Sulfúrico.	
Sulfato de Potássio	48% de K ₂ O 15% de S	Potássio na forma de sulfato, determinado como K ₂ O solúvel em água.	A partir de vários minerais potássicos.	De 0 a 1,2% de Magnésio (Mg).
Sulfato de Potássio e Magnésio	20% de K ₂ O 10% de Mg 20% de S	Potássio e Magnésio determinados como K ₂ O e Mg solúveis em água.	A partir de sais de Potássio, com adição de sais de Magnésio.	Mínimo de 1% de Cloro (CI).
Sulfato de Níquel	10% de S 19% de Ni	Enxofre e Níquel solúveis em água. Níquel na forma de sulfato (NiSO ₄ .6H2O)	A partir do Níquel na forma metálica ou de carbonato extraído com ácido sulfúrico	
Sulfato de Zinco	20% de Zn 9% de S	Zinco solúvel em água na forma de Sulfato (ZnSO ₄ .xH ₂ O)	Por meio da reação do Óxido de Zinco com Ácido Sulfúrico	
Sulfato Férrico	23% de Fe 18% de S	Ferro total na forma de Sulfato (Fe ₂ (SO ₄) ₃ .4H ₂ O)	Obtém-se com oxidação do Sulfato Ferroso com o oxigênio ou em contato com soluções alcalinas.	
Sulfato Ferroso	19% de Fe 10% de S	Ferro total na forma de Sulfato (FeSO ₄ xH ₂ O)	Por meio da reação do Ferro Metálico ou Carbonato de Ferro com Ácido Sulfúrico	

25% de N 12% de S	O Nitrogênio deverá estar 75% na forma Amoniacal e 25% na forma Nítrica.	 Ação do Sulfato de Amônio sobre o Nitrato de Amônio fundido. Neutralização de mistura de Ácido Nítrico e Sulfúrico pelo Amoníaco. 	
19% de N 3,5% de Mg 10% de S	O Nitrogênio deverá estar 67% na forma amoniacal e 33% na forma nítrica.	Neutralização da mistura de Ácido Sulfúrico e Nítrico pelo Amoníaco, com adição de composto de Magnésio.	
28% de P ₂ O ₅ 16% de Ca 5% de S	Fósforo determinado como P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água e mínimo de 24% solúvel em água. Cálcio e Enxofre total.	Reação de Fosfato Natural moído com mistura de Ácido Sulfúrico e Fosfórico. Tratamento de Superfosfato Simples com Metafosfato de Cálcio.	
18% de P ₂ O ₅ 16% de Ca 8% de S	Fósforo determinado como P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água e mínimo de 15% em água. Cálcio e Enxofre total.	Reação de concentrado apatítico moído com Ácido Sulfúrico.	
1% de N 14% de P_2O_5 14% de Ca 6% de S	Nitrogênio na forma amoniacal. Fósforo determinado como P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água	Reação de Superfosfato Simples pó com Amônia e Ácido Sulfúrico.	A somatória de N $+ P_2O_5$ solúvel em Citrato Neutro de Amônio mais água deve ser no mínimo de 18%.
41% de P ₂ O ₅ 10% de Ca	Fósforo determinado como P ₂ O ₅ solúvel em Citrato neutro de Amônio mais água e mínimo de 36% solúvel em água.	Reação de Ácido Fosfórico com concentrado apatítico moído.	
1% de N 38% de P_2O_5 8 % de Ca	Nitrogênio na forma amoniacal. Fósforo determinado como P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água. Cálcio total.	Reação de Superfosfato Triplo pó com Amônia e Ácido Fosfórico.	A somatória de N + P ₂ O ₅ solúvel em Citrato Neutro de Amônio mais água deve ser no mínimo de 41%.
	12% de S 19% de N 3,5% de Mg 10% de S 28% de P ₂ O ₅ 16% de Ca 5% de S 18% de P ₂ O ₅ 16% de Ca 8% de S 1% de N 14% de P ₂ O ₅ 14% de Ca 6% de S 41% de P ₂ O ₅ 10% de Ca	12% de S estar 75% na forma Amoniacal e 25% na forma Nítrica. 19% de N 3,5% de Mg 10% de S 28% de P ₂ O ₅ 16% de Ca 5% de S 18% de P ₂ O ₅ 16% de Ca 5% de S 18% de P ₂ O ₅ 16% de Ca 18% de P ₂ O ₅ 16% de Ca 18% de S 18% de P ₂ O ₅ 16% de Ca 18% de S 18% de P ₂ O ₅ 16% de Ca 18% de S 18% de S 18% de S 18% de P ₂ O ₅ 16% de Ca 18% de S 18% de Ca 18% de	12% de S

Termofosfato Magnesiano	17% de P_2O_5 7% de Mg 16% de Ca	Fósforo determinado como P_2O_5 total e mínimo de 11% em Ácido Cítrico a 2% na relação de 1:100 Cálcio e Magnésio total. Granulometria: Partículas deverão passar 75% (setenta e cinco por cento) em peneira de 0,15 mm (ABNT n° 100)	Tratamento térmico do Fosfato Natural ou concentrado apatítico com adição de compostos Magnesianos e Sílicos.	Apresenta também características de corretivo de acidez.
Termofosfato Magnesiano Grosso	17% de P_2O_5 7% de Mg 16% de Ca	Fósforo determinado como P ₂ O ₅ total e mínimo de 11% em Ácido Cítrico a 2% na relação de 1:100 Cálcio e Magnésio total. Granulometria: Partículas poderão ficar retidas na peneira 0,84 mm (ABNT n° 20) em 15% no máximo.	Tratamento térmico do Fosfato Natural ou concentrado apatítico com adição de compostos Magnesianos e Sílicos.	Apresenta também características de corretivo de acidez.
Termofosfato Magnesiano Potássico	12% de P ₂ O ₅ 4% de K ₂ O 16% de Ca 7% de Mg 10% de Si	Fósforo determinado como P₂O₅ total e mínimo de 6% solúvel em ácido cítrico a 2% na relação 1:100. Potássio determinado como K₂O solúvel em ácido cítrico a 2% na relação 1:100. Cálcio, Magnésio e Silício determinados como Ca, Mg e Si teores totais. Granulometria: Pó e Farelado Fino.	A partir do tratamento térmico a, no mínimo, 1000°C (fundição), do Fosfato Natural ou concentrado apatítico com adição de compostos Magnesianos, Potássicos e Sílicos.	Apresenta também características de corretivo de acidez
Termo- Superfosfato	18% de P_2O_5 1% de Mg 10% de Ca 2% de S	Fósforo determinado como P_2O_5 total; mínimo de 16% de P_2O_5 solúvel em Ácido Cítrico a 2% na relação de 1:100 e mínimo de 5% de P_2O_5 solúvel em água. Cálcio, Enxofre e Magnésio total	Reação seguida de granulação do Termofosfato Magnesiano, com Superfosfato Simples e/ou Super Triplo e Ácido Sulfúrico.	

Trióxido de Molibdênio	57% de Mo	Molibdênio total na forma de Óxido (MoO ₃).	Obtém-se por meio da queima do Molibdato de Amônio ou ustulação da Molibdenita MoS ₂ .	Mínimo de 60% do teor total solúvel em ácido cítrico a 2%.
Ulexita	8% de B	Boro na forma de Borato de Sódio e Cálcio(Na ₂ O.2.CaO.5 B ₂ O ₃ .16H ₂ O).	Beneficiamento físico do mineral natural.	Mínimo de 7% de Ca e 6% de Sódio. Mínimo de 60% do teor total de Boro (B) solúvel em ácido cítrico a 2%.
Uréia	45% de N	O Nitrogênio deverá estar totalmente na forma amídica.	Reação do Amoníaco e Gás Carbônico sob pressão.	O teor de Biureto não pode ser maior de 1,5% para aplicação direta no solo e 0,3% para aplicação foliar.
Uréia Formaldeído	35% de N	Nitrogênio na forma amídica	Reação entre Uréia e Formaldeído.	Pelo menos 60% de N total deve ser insolúvel em água.
Uréia- Sulfato de Amônio	40% de N	O Nitrogênio deverá estar 88% na forma amídica e 12% na forma amoniacal.	Amoniação parcial do Ácido Sulfúrico com posterior adição de solução concentrada de Uréia e Amônia.	O teor de Biureto não poderá ser maior que 1,5% para aplicação direta no solo e 0,3% para aplicação foliar. 4% a 6% de Enxofre (S).
Uréia- Superfosfato	17% de N 43% de P ₂ O ₅	O Nitrogênio deverá estar na forma amídica e o Fósforo determinado como P ₂ O ₅ solúvel em água	Dissolução da Uréia grau técnico no Ácido Fosfórico grau industrial.	O teor de Biureto não poderá ser maior que 1,5% para aplicação direta no solo e 0,3% para aplicação foliar.